File manager - Edit - /home/u478019808/domains/bestandroidphones.store/public_html/static/img/logo/python2.tar
Back
src/_crcfunext.c 0000644 00000033130 15025251367 0007645 0 ustar 00 //----------------------------------------------------------------------------- // Low level CRC functions for use by crcmod. This version is the C // implementation that corresponds to the Python module _crcfunpy. This module // will be used by crcmod if it is built for the target platform. Otherwise, // the Python module is used. // // Copyright (c) 2004 Raymond L. Buvel // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- // Force Py_ssize_t to be used for s# conversions. #define PY_SSIZE_T_CLEAN #include <Python.h> // Make compatible with previous Python versions #if PY_VERSION_HEX < 0x02050000 typedef int Py_ssize_t; #define PY_SSIZE_T_MAX INT_MAX #define PY_SSIZE_T_MIN INT_MIN #endif // Note: the type declarations are set up to work on 32-bit platforms using the // GNU C compiler. They will need to be adjusted for other platforms. In // particular, the Microsoft Windows compiler uses _int64 instead of long long. // Define a few types to make it easier to port to other platforms. typedef unsigned char UINT8; typedef unsigned short UINT16; typedef unsigned int UINT32; typedef unsigned long long UINT64; // Define some macros for the data format strings. The INPUT strings are for // decoding the input parameters to the function which are (data, crc, table). // Note: these format strings use codes that are new in Python 2.3 so it would // be necessary to rewrite the code for versions earlier than 2.3. #define INPUT8 "s#Bs#" #define INPUT16 "s#Hs#" #define INPUT32 "s#Is#" #define INPUT64 "s#Ks#" // Define some macros that extract the specified byte from an integral value in // what should be a platform independent manner. #define BYTE0(x) ((UINT8)(x)) #define BYTE1(x) ((UINT8)((x) >> 8)) #define BYTE2(x) ((UINT8)((x) >> 16)) #define BYTE3(x) ((UINT8)((x) >> 24)) #define BYTE7(x) ((UINT8)((x) >> 56)) //----------------------------------------------------------------------------- // Compute a 8-bit crc over the input data. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 8-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc8(PyObject* self, PyObject* args) { UINT8 crc; UINT8* data; Py_ssize_t dataLen; UINT8* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT8, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ crc]; data++; } return PyInt_FromLong((long)crc); } //----------------------------------------------------------------------------- // Compute a 8-bit crc over the input data. The data stream is bit reversed // during the computation. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 8-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc8r(PyObject* self, PyObject* args) { UINT8 crc; UINT8* data; Py_ssize_t dataLen; UINT8* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT8, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ crc]; data++; } return PyInt_FromLong((long)crc); } //----------------------------------------------------------------------------- // Compute a 16-bit crc over the input data. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 16-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc16(PyObject* self, PyObject* args) { UINT16 crc; UINT8* data; Py_ssize_t dataLen; UINT16* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT16, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*2) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE1(crc)] ^ (crc << 8); data++; } return PyInt_FromLong((long)crc); } //----------------------------------------------------------------------------- // Compute a 16-bit crc over the input data. The data stream is bit reversed // during the computation. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 16-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc16r(PyObject* self, PyObject* args) { UINT16 crc; UINT8* data; Py_ssize_t dataLen; UINT16* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT16, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*2) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE0(crc)] ^ (crc >> 8); data++; } return PyInt_FromLong((long)crc); } //----------------------------------------------------------------------------- // Compute a 24-bit crc over the input data. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 24-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc24(PyObject* self, PyObject* args) { UINT32 crc; UINT8* data; Py_ssize_t dataLen; UINT32* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT32, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*4) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE2(crc)] ^ (crc << 8); data++; } return PyInt_FromLong((long)(crc & 0xFFFFFFU)); } //----------------------------------------------------------------------------- // Compute a 24-bit crc over the input data. The data stream is bit reversed // during the computation. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 24-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc24r(PyObject* self, PyObject* args) { UINT32 crc; UINT8* data; Py_ssize_t dataLen; UINT32* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT32, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*4) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } crc = crc & 0xFFFFFFU; while (dataLen--) { crc = table[*data ^ BYTE0(crc)] ^ (crc >> 8); data++; } return PyInt_FromLong((long)crc); } //----------------------------------------------------------------------------- // Compute a 32-bit crc over the input data. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 32-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc32(PyObject* self, PyObject* args) { UINT32 crc; UINT8* data; Py_ssize_t dataLen; UINT32* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT32, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*4) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE3(crc)] ^ (crc << 8); data++; } return PyLong_FromUnsignedLong(crc); } //----------------------------------------------------------------------------- // Compute a 32-bit crc over the input data. The data stream is bit reversed // during the computation. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 32-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc32r(PyObject* self, PyObject* args) { UINT32 crc; UINT8* data; Py_ssize_t dataLen; UINT32* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT32, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*4) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE0(crc)] ^ (crc >> 8); data++; } return PyLong_FromUnsignedLong(crc); } //----------------------------------------------------------------------------- // Compute a 64-bit crc over the input data. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 64-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc64(PyObject* self, PyObject* args) { UINT64 crc; UINT8* data; Py_ssize_t dataLen; UINT64* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT64, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*8) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE7(crc)] ^ (crc << 8); data++; } return PyLong_FromUnsignedLongLong(crc); } //----------------------------------------------------------------------------- // Compute a 64-bit crc over the input data. The data stream is bit reversed // during the computation. // Inputs: // data - string containing the data // crc - unsigned integer containing the initial crc // table - string containing the 64-bit table corresponding to the generator // polynomial. // Returns: // crc - unsigned integer containing the resulting crc static PyObject* _crc64r(PyObject* self, PyObject* args) { UINT64 crc; UINT8* data; Py_ssize_t dataLen; UINT64* table; Py_ssize_t tableLen; if (!PyArg_ParseTuple(args, INPUT64, &data, &dataLen, &crc, &table, &tableLen)) { return NULL; } if (tableLen != 256*8) { PyErr_SetString(PyExc_ValueError, "invalid CRC table"); return NULL; } while (dataLen--) { crc = table[*data ^ BYTE0(crc)] ^ (crc >> 8); data++; } return PyLong_FromUnsignedLongLong(crc); } //----------------------------------------------------------------------------- static PyMethodDef methodTable[] = { {"_crc8", _crc8, METH_VARARGS}, {"_crc8r", _crc8r, METH_VARARGS}, {"_crc16", _crc16, METH_VARARGS}, {"_crc16r", _crc16r, METH_VARARGS}, {"_crc24", _crc24, METH_VARARGS}, {"_crc24r", _crc24r, METH_VARARGS}, {"_crc32", _crc32, METH_VARARGS}, {"_crc32r", _crc32r, METH_VARARGS}, {"_crc64", _crc64, METH_VARARGS}, {"_crc64r", _crc64r, METH_VARARGS}, {NULL, NULL} }; //----------------------------------------------------------------------------- void init_crcfunext(void) { PyObject *m; if ((sizeof(UINT8) != 1) || (sizeof(UINT16) != 2) || (sizeof(UINT32) != 4) || (sizeof(UINT64) != 8)) { Py_FatalError("crcfunext: One of the data types is invalid"); } m = Py_InitModule("_crcfunext", methodTable); } crcmod/crcmod.py 0000644 00000041304 15025251367 0007644 0 ustar 00 #----------------------------------------------------------------------------- # Copyright (c) 2010 Raymond L. Buvel # Copyright (c) 2010 Craig McQueen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #----------------------------------------------------------------------------- '''crcmod is a Python module for gererating objects that compute the Cyclic Redundancy Check. Any 8, 16, 24, 32, or 64 bit polynomial can be used. The following are the public components of this module. Crc -- a class that creates instances providing the same interface as the md5 and sha modules in the Python standard library. These instances also provide a method for generating a C/C++ function to compute the CRC. mkCrcFun -- create a Python function to compute the CRC using the specified polynomial and initial value. This provides a much simpler interface if all you need is a function for CRC calculation. ''' __all__ = '''mkCrcFun Crc '''.split() # Select the appropriate set of low-level CRC functions for this installation. # If the extension module was not built, drop back to the Python implementation # even though it is significantly slower. try: import _crcfunext as _crcfun _usingExtension = True except ImportError: import _crcfunpy as _crcfun _usingExtension = False import sys, struct #----------------------------------------------------------------------------- class Crc: '''Compute a Cyclic Redundancy Check (CRC) using the specified polynomial. Instances of this class have the same interface as the md5 and sha modules in the Python standard library. See the documentation for these modules for examples of how to use a Crc instance. The string representation of a Crc instance identifies the polynomial, initial value, XOR out value, and the current CRC value. The print statement can be used to output this information. If you need to generate a C/C++ function for use in another application, use the generateCode method. If you need to generate code for another language, subclass Crc and override the generateCode method. The following are the parameters supplied to the constructor. poly -- The generator polynomial to use in calculating the CRC. The value is specified as a Python integer or long integer. The bits in this integer are the coefficients of the polynomial. The only polynomials allowed are those that generate 8, 16, 24, 32, or 64 bit CRCs. initCrc -- Initial value used to start the CRC calculation. This initial value should be the initial shift register value XORed with the final XOR value. That is equivalent to the CRC result the algorithm should return for a zero-length string. Defaults to all bits set because that starting value will take leading zero bytes into account. Starting with zero will ignore all leading zero bytes. rev -- A flag that selects a bit reversed algorithm when True. Defaults to True because the bit reversed algorithms are more efficient. xorOut -- Final value to XOR with the calculated CRC value. Used by some CRC algorithms. Defaults to zero. ''' def __init__(self, poly, initCrc=~0L, rev=True, xorOut=0, initialize=True): if not initialize: # Don't want to perform the initialization when using new or copy # to create a new instance. return (sizeBits, initCrc, xorOut) = _verifyParams(poly, initCrc, xorOut) self.digest_size = sizeBits//8 self.initCrc = initCrc self.xorOut = xorOut self.poly = poly self.reverse = rev (crcfun, table) = _mkCrcFun(poly, sizeBits, initCrc, rev, xorOut) self._crc = crcfun self.table = table self.crcValue = self.initCrc def __str__(self): lst = [] lst.append('poly = 0x%X' % self.poly) lst.append('reverse = %s' % self.reverse) fmt = '0x%%0%dX' % (self.digest_size*2) lst.append('initCrc = %s' % (fmt % self.initCrc)) lst.append('xorOut = %s' % (fmt % self.xorOut)) lst.append('crcValue = %s' % (fmt % self.crcValue)) return '\n'.join(lst) def new(self, arg=None): '''Create a new instance of the Crc class initialized to the same values as the original instance. The current CRC is set to the initial value. If a string is provided in the optional arg parameter, it is passed to the update method. ''' n = Crc(poly=None, initialize=False) n._crc = self._crc n.digest_size = self.digest_size n.initCrc = self.initCrc n.xorOut = self.xorOut n.table = self.table n.crcValue = self.initCrc n.reverse = self.reverse n.poly = self.poly if arg is not None: n.update(arg) return n def copy(self): '''Create a new instance of the Crc class initialized to the same values as the original instance. The current CRC is set to the current value. This allows multiple CRC calculations using a common initial string. ''' c = self.new() c.crcValue = self.crcValue return c def update(self, data): '''Update the current CRC value using the string specified as the data parameter. ''' self.crcValue = self._crc(data, self.crcValue) def digest(self): '''Return the current CRC value as a string of bytes. The length of this string is specified in the digest_size attribute. ''' n = self.digest_size crc = self.crcValue lst = [] while n > 0: lst.append(chr(crc & 0xFF)) crc = crc >> 8 n -= 1 lst.reverse() return ''.join(lst) def hexdigest(self): '''Return the current CRC value as a string of hex digits. The length of this string is twice the digest_size attribute. ''' n = self.digest_size crc = self.crcValue lst = [] while n > 0: lst.append('%02X' % (crc & 0xFF)) crc = crc >> 8 n -= 1 lst.reverse() return ''.join(lst) def generateCode(self, functionName, out, dataType=None, crcType=None): '''Generate a C/C++ function. functionName -- String specifying the name of the function. out -- An open file-like object with a write method. This specifies where the generated code is written. dataType -- An optional parameter specifying the data type of the input data to the function. Defaults to UINT8. crcType -- An optional parameter specifying the data type of the CRC value. Defaults to one of UINT8, UINT16, UINT32, or UINT64 depending on the size of the CRC value. ''' if dataType is None: dataType = 'UINT8' if crcType is None: size = 8*self.digest_size if size == 24: size = 32 crcType = 'UINT%d' % size if self.digest_size == 1: # Both 8-bit CRC algorithms are the same crcAlgor = 'table[*data ^ (%s)crc]' elif self.reverse: # The bit reverse algorithms are all the same except for the data # type of the crc variable which is specified elsewhere. crcAlgor = 'table[*data ^ (%s)crc] ^ (crc >> 8)' else: # The forward CRC algorithms larger than 8 bits have an extra shift # operation to get the high byte. shift = 8*(self.digest_size - 1) crcAlgor = 'table[*data ^ (%%s)(crc >> %d)] ^ (crc << 8)' % shift fmt = '0x%%0%dX' % (2*self.digest_size) if self.digest_size <= 4: fmt = fmt + 'U,' else: # Need the long long type identifier to keep gcc from complaining. fmt = fmt + 'ULL,' # Select the number of entries per row in the output code. n = {1:8, 2:8, 3:4, 4:4, 8:2}[self.digest_size] lst = [] for i, val in enumerate(self.table): if (i % n) == 0: lst.append('\n ') lst.append(fmt % val) poly = 'polynomial: 0x%X' % self.poly if self.reverse: poly = poly + ', bit reverse algorithm' if self.xorOut: # Need to remove the comma from the format. preCondition = '\n crc = crc ^ %s;' % (fmt[:-1] % self.xorOut) postCondition = preCondition else: preCondition = '' postCondition = '' if self.digest_size == 3: # The 24-bit CRC needs to be conditioned so that only 24-bits are # used from the 32-bit variable. if self.reverse: preCondition += '\n crc = crc & 0xFFFFFFU;' else: postCondition += '\n crc = crc & 0xFFFFFFU;' parms = { 'dataType' : dataType, 'crcType' : crcType, 'name' : functionName, 'crcAlgor' : crcAlgor % dataType, 'crcTable' : ''.join(lst), 'poly' : poly, 'preCondition' : preCondition, 'postCondition' : postCondition, } out.write(_codeTemplate % parms) #----------------------------------------------------------------------------- def mkCrcFun(poly, initCrc=~0L, rev=True, xorOut=0): '''Return a function that computes the CRC using the specified polynomial. poly -- integer representation of the generator polynomial initCrc -- default initial CRC value rev -- when true, indicates that the data is processed bit reversed. xorOut -- the final XOR value The returned function has the following user interface def crcfun(data, crc=initCrc): ''' # First we must verify the params (sizeBits, initCrc, xorOut) = _verifyParams(poly, initCrc, xorOut) # Make the function (and table), return the function return _mkCrcFun(poly, sizeBits, initCrc, rev, xorOut)[0] #----------------------------------------------------------------------------- # Naming convention: # All function names ending with r are bit reverse variants of the ones # without the r. #----------------------------------------------------------------------------- # Check the polynomial to make sure that it is acceptable and return the number # of bits in the CRC. def _verifyPoly(poly): msg = 'The degree of the polynomial must be 8, 16, 24, 32 or 64' poly = long(poly) # Use a common representation for all operations for n in (8,16,24,32,64): low = 1L<<n high = low*2 if low <= poly < high: return n raise ValueError(msg) #----------------------------------------------------------------------------- # Bit reverse the input value. def _bitrev(x, n): x = long(x) y = 0L for i in xrange(n): y = (y << 1) | (x & 1L) x = x >> 1 if ((1L<<n)-1) <= sys.maxint: return int(y) return y #----------------------------------------------------------------------------- # The following functions compute the CRC for a single byte. These are used # to build up the tables needed in the CRC algorithm. Assumes the high order # bit of the polynomial has been stripped off. def _bytecrc(crc, poly, n): crc = long(crc) poly = long(poly) mask = 1L<<(n-1) for i in xrange(8): if crc & mask: crc = (crc << 1) ^ poly else: crc = crc << 1 mask = (1L<<n) - 1 crc = crc & mask if mask <= sys.maxint: return int(crc) return crc def _bytecrc_r(crc, poly, n): crc = long(crc) poly = long(poly) for i in xrange(8): if crc & 1L: crc = (crc >> 1) ^ poly else: crc = crc >> 1 mask = (1L<<n) - 1 crc = crc & mask if mask <= sys.maxint: return int(crc) return crc #----------------------------------------------------------------------------- # The following functions compute the table needed to compute the CRC. The # table is returned as a list. Note that the array module does not support # 64-bit integers on a 32-bit architecture as of Python 2.3. # # These routines assume that the polynomial and the number of bits in the CRC # have been checked for validity by the caller. def _mkTable(poly, n): mask = (1L<<n) - 1 poly = long(poly) & mask table = [_bytecrc(long(i)<<(n-8),poly,n) for i in xrange(256)] return table def _mkTable_r(poly, n): mask = (1L<<n) - 1 poly = _bitrev(long(poly) & mask, n) table = [_bytecrc_r(long(i),poly,n) for i in xrange(256)] return table #----------------------------------------------------------------------------- # Map the CRC size onto the functions that handle these sizes. _sizeMap = { 8 : [_crcfun._crc8, _crcfun._crc8r], 16 : [_crcfun._crc16, _crcfun._crc16r], 24 : [_crcfun._crc24, _crcfun._crc24r], 32 : [_crcfun._crc32, _crcfun._crc32r], 64 : [_crcfun._crc64, _crcfun._crc64r], } #----------------------------------------------------------------------------- # Build a mapping of size to struct module type code. This table is # constructed dynamically so that it has the best chance of picking the best # code to use for the platform we are running on. This should properly adapt # to 32 and 64 bit machines. _sizeToTypeCode = {} for typeCode in 'B H I L Q'.split(): size = {1:8, 2:16, 4:32, 8:64}.get(struct.calcsize(typeCode),None) if size is not None and size not in _sizeToTypeCode: _sizeToTypeCode[size] = '256%s' % typeCode _sizeToTypeCode[24] = _sizeToTypeCode[32] del typeCode, size #----------------------------------------------------------------------------- # The following function validates the parameters of the CRC, namely, # poly, and initial/final XOR values. # It returns the size of the CRC (in bits), and "sanitized" initial/final XOR values. def _verifyParams(poly, initCrc, xorOut): sizeBits = _verifyPoly(poly) mask = (1L<<sizeBits) - 1 # Adjust the initial CRC to the correct data type (unsigned value). initCrc = long(initCrc) & mask if mask <= sys.maxint: initCrc = int(initCrc) # Similar for XOR-out value. xorOut = long(xorOut) & mask if mask <= sys.maxint: xorOut = int(xorOut) return (sizeBits, initCrc, xorOut) #----------------------------------------------------------------------------- # The following function returns a Python function to compute the CRC. # # It must be passed parameters that are already verified & sanitized by # _verifyParams(). # # The returned function calls a low level function that is written in C if the # extension module could be loaded. Otherwise, a Python implementation is # used. # # In addition to this function, a list containing the CRC table is returned. def _mkCrcFun(poly, sizeBits, initCrc, rev, xorOut): if rev: tableList = _mkTable_r(poly, sizeBits) _fun = _sizeMap[sizeBits][1] else: tableList = _mkTable(poly, sizeBits) _fun = _sizeMap[sizeBits][0] _table = tableList if _usingExtension: _table = struct.pack(_sizeToTypeCode[sizeBits], *tableList) if xorOut == 0: def crcfun(data, crc=initCrc, table=_table, fun=_fun): return fun(data, crc, table) else: def crcfun(data, crc=initCrc, table=_table, fun=_fun): return xorOut ^ fun(data, xorOut ^ crc, table) return crcfun, tableList #----------------------------------------------------------------------------- _codeTemplate = '''// Automatically generated CRC function // %(poly)s %(crcType)s %(name)s(%(dataType)s *data, int len, %(crcType)s crc) { static const %(crcType)s table[256] = {%(crcTable)s }; %(preCondition)s while (len > 0) { crc = %(crcAlgor)s; data++; len--; }%(postCondition)s return crc; } ''' crcmod/predefined.py 0000644 00000022600 15025251367 0010500 0 ustar 00 #----------------------------------------------------------------------------- # Copyright (c) 2010 Craig McQueen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #----------------------------------------------------------------------------- ''' crcmod.predefined defines some well-known CRC algorithms. To use it, e.g.: import crcmod.predefined crc32func = crcmod.predefined.mkPredefinedCrcFun("crc-32") crc32class = crcmod.predefined.PredefinedCrc("crc-32") crcmod.predefined.Crc is an alias for crcmod.predefined.PredefinedCrc But if doing 'from crc.predefined import *', only PredefinedCrc is imported. ''' # local imports import crcmod __all__ = [ 'PredefinedCrc', 'mkPredefinedCrcFun', ] REVERSE = True NON_REVERSE = False # The following table defines the parameters of well-known CRC algorithms. # The "Check" value is the CRC for the ASCII byte sequence "123456789". It # can be used for unit tests. _crc_definitions_table = [ # Name Identifier-name, Poly Reverse Init-value XOR-out Check [ 'crc-8', 'Crc8', 0x107, NON_REVERSE, 0x00, 0x00, 0xF4, ], [ 'crc-8-darc', 'Crc8Darc', 0x139, REVERSE, 0x00, 0x00, 0x15, ], [ 'crc-8-i-code', 'Crc8ICode', 0x11D, NON_REVERSE, 0xFD, 0x00, 0x7E, ], [ 'crc-8-itu', 'Crc8Itu', 0x107, NON_REVERSE, 0x55, 0x55, 0xA1, ], [ 'crc-8-maxim', 'Crc8Maxim', 0x131, REVERSE, 0x00, 0x00, 0xA1, ], [ 'crc-8-rohc', 'Crc8Rohc', 0x107, REVERSE, 0xFF, 0x00, 0xD0, ], [ 'crc-8-wcdma', 'Crc8Wcdma', 0x19B, REVERSE, 0x00, 0x00, 0x25, ], [ 'crc-16', 'Crc16', 0x18005, REVERSE, 0x0000, 0x0000, 0xBB3D, ], [ 'crc-16-buypass', 'Crc16Buypass', 0x18005, NON_REVERSE, 0x0000, 0x0000, 0xFEE8, ], [ 'crc-16-dds-110', 'Crc16Dds110', 0x18005, NON_REVERSE, 0x800D, 0x0000, 0x9ECF, ], [ 'crc-16-dect', 'Crc16Dect', 0x10589, NON_REVERSE, 0x0001, 0x0001, 0x007E, ], [ 'crc-16-dnp', 'Crc16Dnp', 0x13D65, REVERSE, 0xFFFF, 0xFFFF, 0xEA82, ], [ 'crc-16-en-13757', 'Crc16En13757', 0x13D65, NON_REVERSE, 0xFFFF, 0xFFFF, 0xC2B7, ], [ 'crc-16-genibus', 'Crc16Genibus', 0x11021, NON_REVERSE, 0x0000, 0xFFFF, 0xD64E, ], [ 'crc-16-maxim', 'Crc16Maxim', 0x18005, REVERSE, 0xFFFF, 0xFFFF, 0x44C2, ], [ 'crc-16-mcrf4xx', 'Crc16Mcrf4xx', 0x11021, REVERSE, 0xFFFF, 0x0000, 0x6F91, ], [ 'crc-16-riello', 'Crc16Riello', 0x11021, REVERSE, 0x554D, 0x0000, 0x63D0, ], [ 'crc-16-t10-dif', 'Crc16T10Dif', 0x18BB7, NON_REVERSE, 0x0000, 0x0000, 0xD0DB, ], [ 'crc-16-teledisk', 'Crc16Teledisk', 0x1A097, NON_REVERSE, 0x0000, 0x0000, 0x0FB3, ], [ 'crc-16-usb', 'Crc16Usb', 0x18005, REVERSE, 0x0000, 0xFFFF, 0xB4C8, ], [ 'x-25', 'CrcX25', 0x11021, REVERSE, 0x0000, 0xFFFF, 0x906E, ], [ 'xmodem', 'CrcXmodem', 0x11021, NON_REVERSE, 0x0000, 0x0000, 0x31C3, ], [ 'modbus', 'CrcModbus', 0x18005, REVERSE, 0xFFFF, 0x0000, 0x4B37, ], # Note definitions of CCITT are disputable. See: # http://homepages.tesco.net/~rainstorm/crc-catalogue.htm # http://web.archive.org/web/20071229021252/http://www.joegeluso.com/software/articles/ccitt.htm [ 'kermit', 'CrcKermit', 0x11021, REVERSE, 0x0000, 0x0000, 0x2189, ], [ 'crc-ccitt-false', 'CrcCcittFalse', 0x11021, NON_REVERSE, 0xFFFF, 0x0000, 0x29B1, ], [ 'crc-aug-ccitt', 'CrcAugCcitt', 0x11021, NON_REVERSE, 0x1D0F, 0x0000, 0xE5CC, ], [ 'crc-24', 'Crc24', 0x1864CFB, NON_REVERSE, 0xB704CE, 0x000000, 0x21CF02, ], [ 'crc-24-flexray-a', 'Crc24FlexrayA', 0x15D6DCB, NON_REVERSE, 0xFEDCBA, 0x000000, 0x7979BD, ], [ 'crc-24-flexray-b', 'Crc24FlexrayB', 0x15D6DCB, NON_REVERSE, 0xABCDEF, 0x000000, 0x1F23B8, ], [ 'crc-32', 'Crc32', 0x104C11DB7, REVERSE, 0x00000000, 0xFFFFFFFF, 0xCBF43926, ], [ 'crc-32-bzip2', 'Crc32Bzip2', 0x104C11DB7, NON_REVERSE, 0x00000000, 0xFFFFFFFF, 0xFC891918, ], [ 'crc-32c', 'Crc32C', 0x11EDC6F41, REVERSE, 0x00000000, 0xFFFFFFFF, 0xE3069283, ], [ 'crc-32d', 'Crc32D', 0x1A833982B, REVERSE, 0x00000000, 0xFFFFFFFF, 0x87315576, ], [ 'crc-32-mpeg', 'Crc32Mpeg', 0x104C11DB7, NON_REVERSE, 0xFFFFFFFF, 0x00000000, 0x0376E6E7, ], [ 'posix', 'CrcPosix', 0x104C11DB7, NON_REVERSE, 0xFFFFFFFF, 0xFFFFFFFF, 0x765E7680, ], [ 'crc-32q', 'Crc32Q', 0x1814141AB, NON_REVERSE, 0x00000000, 0x00000000, 0x3010BF7F, ], [ 'jamcrc', 'CrcJamCrc', 0x104C11DB7, REVERSE, 0xFFFFFFFF, 0x00000000, 0x340BC6D9, ], [ 'xfer', 'CrcXfer', 0x1000000AF, NON_REVERSE, 0x00000000, 0x00000000, 0xBD0BE338, ], # 64-bit # Name Identifier-name, Poly Reverse Init-value XOR-out Check [ 'crc-64', 'Crc64', 0x1000000000000001B, REVERSE, 0x0000000000000000, 0x0000000000000000, 0x46A5A9388A5BEFFE, ], [ 'crc-64-we', 'Crc64We', 0x142F0E1EBA9EA3693, NON_REVERSE, 0x0000000000000000, 0xFFFFFFFFFFFFFFFF, 0x62EC59E3F1A4F00A, ], [ 'crc-64-jones', 'Crc64Jones', 0x1AD93D23594C935A9, REVERSE, 0xFFFFFFFFFFFFFFFF, 0x0000000000000000, 0xCAA717168609F281, ], ] def _simplify_name(name): """ Reduce CRC definition name to a simplified form: * lowercase * dashes removed * spaces removed * any initial "CRC" string removed """ name = name.lower() name = name.replace('-', '') name = name.replace(' ', '') if name.startswith('crc'): name = name[len('crc'):] return name _crc_definitions_by_name = {} _crc_definitions_by_identifier = {} _crc_definitions = [] _crc_table_headings = [ 'name', 'identifier', 'poly', 'reverse', 'init', 'xor_out', 'check' ] for table_entry in _crc_definitions_table: crc_definition = dict(zip(_crc_table_headings, table_entry)) _crc_definitions.append(crc_definition) name = _simplify_name(table_entry[0]) if name in _crc_definitions_by_name: raise Exception("Duplicate entry for '%s' in CRC table" % name) _crc_definitions_by_name[name] = crc_definition _crc_definitions_by_identifier[table_entry[1]] = crc_definition def _get_definition_by_name(crc_name): definition = _crc_definitions_by_name.get(_simplify_name(crc_name), None) if not definition: definition = _crc_definitions_by_identifier.get(crc_name, None) if not definition: raise KeyError("Unkown CRC name '%s'" % crc_name) return definition class PredefinedCrc(crcmod.Crc): def __init__(self, crc_name): definition = _get_definition_by_name(crc_name) crcmod.Crc.__init__(self, poly=definition['poly'], initCrc=definition['init'], rev=definition['reverse'], xorOut=definition['xor_out']) # crcmod.predefined.Crc is an alias for crcmod.predefined.PredefinedCrc Crc = PredefinedCrc def mkPredefinedCrcFun(crc_name): definition = _get_definition_by_name(crc_name) return crcmod.mkCrcFun(poly=definition['poly'], initCrc=definition['init'], rev=definition['reverse'], xorOut=definition['xor_out']) # crcmod.predefined.mkCrcFun is an alias for crcmod.predefined.mkPredefinedCrcFun mkCrcFun = mkPredefinedCrcFun crcmod/_crcfunpy.py 0000644 00000006001 15025251367 0010360 0 ustar 00 #----------------------------------------------------------------------------- # Low level CRC functions for use by crcmod. This version is implemented in # Python for a couple of reasons. 1) Provide a reference implememtation. # 2) Provide a version that can be used on systems where a C compiler is not # available for building extension modules. # # Copyright (c) 2004 Raymond L. Buvel # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #----------------------------------------------------------------------------- def _crc8(data, crc, table): crc = crc & 0xFF for x in data: crc = table[ord(x) ^ crc] return crc def _crc8r(data, crc, table): crc = crc & 0xFF for x in data: crc = table[ord(x) ^ crc] return crc def _crc16(data, crc, table): crc = crc & 0xFFFF for x in data: crc = table[ord(x) ^ ((crc>>8) & 0xFF)] ^ ((crc << 8) & 0xFF00) return crc def _crc16r(data, crc, table): crc = crc & 0xFFFF for x in data: crc = table[ord(x) ^ (crc & 0xFF)] ^ (crc >> 8) return crc def _crc24(data, crc, table): crc = crc & 0xFFFFFF for x in data: crc = table[ord(x) ^ (int(crc>>16) & 0xFF)] ^ ((crc << 8) & 0xFFFF00) return crc def _crc24r(data, crc, table): crc = crc & 0xFFFFFF for x in data: crc = table[ord(x) ^ int(crc & 0xFF)] ^ (crc >> 8) return crc def _crc32(data, crc, table): crc = crc & 0xFFFFFFFFL for x in data: crc = table[ord(x) ^ (int(crc>>24) & 0xFF)] ^ ((crc << 8) & 0xFFFFFF00L) return crc def _crc32r(data, crc, table): crc = crc & 0xFFFFFFFFL for x in data: crc = table[ord(x) ^ int(crc & 0xFFL)] ^ (crc >> 8) return crc def _crc64(data, crc, table): crc = crc & 0xFFFFFFFFFFFFFFFFL for x in data: crc = table[ord(x) ^ (int(crc>>56) & 0xFF)] ^ ((crc << 8) & 0xFFFFFFFFFFFFFF00L) return crc def _crc64r(data, crc, table): crc = crc & 0xFFFFFFFFFFFFFFFFL for x in data: crc = table[ord(x) ^ int(crc & 0xFFL)] ^ (crc >> 8) return crc crcmod/__init__.py 0000644 00000000302 15025251367 0010125 0 ustar 00 try: from crcmod.crcmod import * import crcmod.predefined except ImportError: # Make this backward compatible from crcmod import * import predefined __doc__ = crcmod.__doc__ crcmod/test.py 0000644 00000041163 15025251367 0007357 0 ustar 00 #----------------------------------------------------------------------------- # Copyright (c) 2010 Raymond L. Buvel # Copyright (c) 2010 Craig McQueen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #----------------------------------------------------------------------------- '''Unit tests for crcmod functionality''' import unittest import binascii from crcmod import mkCrcFun, Crc try: from crcmod.crcmod import _usingExtension from crcmod.predefined import PredefinedCrc from crcmod.predefined import mkPredefinedCrcFun from crcmod.predefined import _crc_definitions as _predefined_crc_definitions except ImportError: from crcmod import _usingExtension from predefined import PredefinedCrc from predefined import mkPredefinedCrcFun from predefined import _crc_definitions as _predefined_crc_definitions #----------------------------------------------------------------------------- # This polynomial was chosen because it is the product of two irreducible # polynomials. # g8 = (x^7+x+1)*(x+1) g8 = 0x185 #----------------------------------------------------------------------------- # The following reproduces all of the entries in the Numerical Recipes table. # This is the standard CCITT polynomial. g16 = 0x11021 #----------------------------------------------------------------------------- g24 = 0x15D6DCB #----------------------------------------------------------------------------- # This is the standard AUTODIN-II polynomial which appears to be used in a # wide variety of standards and applications. g32 = 0x104C11DB7 #----------------------------------------------------------------------------- # I was able to locate a couple of 64-bit polynomials on the web. To make it # easier to input the representation, define a function that builds a # polynomial from a list of the bits that need to be turned on. def polyFromBits(bits): p = 0L for n in bits: p = p | (1L << n) return p # The following is from the paper "An Improved 64-bit Cyclic Redundancy Check # for Protein Sequences" by David T. Jones g64a = polyFromBits([64, 63, 61, 59, 58, 56, 55, 52, 49, 48, 47, 46, 44, 41, 37, 36, 34, 32, 31, 28, 26, 23, 22, 19, 16, 13, 12, 10, 9, 6, 4, 3, 0]) # The following is from Standard ECMA-182 "Data Interchange on 12,7 mm 48-Track # Magnetic Tape Cartridges -DLT1 Format-", December 1992. g64b = polyFromBits([64, 62, 57, 55, 54, 53, 52, 47, 46, 45, 40, 39, 38, 37, 35, 33, 32, 31, 29, 27, 24, 23, 22, 21, 19, 17, 13, 12, 10, 9, 7, 4, 1, 0]) #----------------------------------------------------------------------------- # This class is used to check the CRC calculations against a direct # implementation using polynomial division. class poly: '''Class implementing polynomials over the field of integers mod 2''' def __init__(self,p): p = long(p) if p < 0: raise ValueError('invalid polynomial') self.p = p def __long__(self): return self.p def __eq__(self,other): return self.p == other.p def __ne__(self,other): return self.p != other.p # To allow sorting of polynomials, use their long integer form for # comparison def __cmp__(self,other): return cmp(self.p, other.p) def __nonzero__(self): return self.p != 0L def __neg__(self): return self # These polynomials are their own inverse under addition def __invert__(self): n = max(self.deg() + 1, 1) x = (1L << n) - 1 return poly(self.p ^ x) def __add__(self,other): return poly(self.p ^ other.p) def __sub__(self,other): return poly(self.p ^ other.p) def __mul__(self,other): a = self.p b = other.p if a == 0 or b == 0: return poly(0) x = 0L while b: if b&1: x = x ^ a a = a<<1 b = b>>1 return poly(x) def __divmod__(self,other): u = self.p m = self.deg() v = other.p n = other.deg() if v == 0: raise ZeroDivisionError('polynomial division by zero') if n == 0: return (self,poly(0)) if m < n: return (poly(0),self) k = m-n a = 1L << m v = v << k q = 0L while k > 0: if a & u: u = u ^ v q = q | 1L q = q << 1 a = a >> 1 v = v >> 1 k -= 1 if a & u: u = u ^ v q = q | 1L return (poly(q),poly(u)) def __div__(self,other): return self.__divmod__(other)[0] def __mod__(self,other): return self.__divmod__(other)[1] def __repr__(self): return 'poly(0x%XL)' % self.p def __str__(self): p = self.p if p == 0: return '0' lst = { 0:[], 1:['1'], 2:['x'], 3:['1','x'] }[p&3] p = p>>2 n = 2 while p: if p&1: lst.append('x^%d' % n) p = p>>1 n += 1 lst.reverse() return '+'.join(lst) def deg(self): '''return the degree of the polynomial''' a = self.p if a == 0: return -1 n = 0 while a >= 0x10000L: n += 16 a = a >> 16 a = int(a) while a > 1: n += 1 a = a >> 1 return n #----------------------------------------------------------------------------- # The following functions compute the CRC using direct polynomial division. # These functions are checked against the result of the table driven # algorithms. g8p = poly(g8) x8p = poly(1L<<8) def crc8p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x8p%g8p) g16p = poly(g16) x16p = poly(1L<<16) def crc16p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x16p%g16p) g24p = poly(g24) x24p = poly(1L<<24) def crc24p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x24p%g24p) g32p = poly(g32) x32p = poly(1L<<32) def crc32p(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x32p%g32p) g64ap = poly(g64a) x64p = poly(1L<<64) def crc64ap(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x64p%g64ap) g64bp = poly(g64b) def crc64bp(d): d = map(ord, d) p = 0L for i in d: p = p*256L + i p = poly(p) return long(p*x64p%g64bp) class KnownAnswerTests(unittest.TestCase): test_messages = [ 'T', 'CatMouse987654321', ] known_answers = [ [ (g8,0,0), (0xFE, 0x9D) ], [ (g8,-1,1), (0x4F, 0x9B) ], [ (g8,0,1), (0xFE, 0x62) ], [ (g16,0,0), (0x1A71, 0xE556) ], [ (g16,-1,1), (0x1B26, 0xF56E) ], [ (g16,0,1), (0x14A1, 0xC28D) ], [ (g24,0,0), (0xBCC49D, 0xC4B507) ], [ (g24,-1,1), (0x59BD0E, 0x0AAA37) ], [ (g24,0,1), (0xD52B0F, 0x1523AB) ], [ (g32,0,0), (0x6B93DDDB, 0x12DCA0F4) ], [ (g32,0xFFFFFFFFL,1), (0x41FB859FL, 0xF7B400A7L) ], [ (g32,0,1), (0x6C0695EDL, 0xC1A40EE5L) ], [ (g32,0,1,0xFFFFFFFF), (0xBE047A60L, 0x084BFF58L) ], ] def test_known_answers(self): for crcfun_params, v in self.known_answers: crcfun = mkCrcFun(*crcfun_params) self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC parameters %s, input ''" % (crcfun_params,)) for i, msg in enumerate(self.test_messages): self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg)) self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg)) self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg)) class CompareReferenceCrcTest(unittest.TestCase): test_messages = [ '', 'T', '123456789', 'CatMouse987654321', ] test_poly_crcs = [ [ (g8,0,0), crc8p ], [ (g16,0,0), crc16p ], [ (g24,0,0), crc24p ], [ (g32,0,0), crc32p ], [ (g64a,0,0), crc64ap ], [ (g64b,0,0), crc64bp ], ] @staticmethod def reference_crc32(d, crc=0): """This function modifies the return value of binascii.crc32 to be an unsigned 32-bit value. I.e. in the range 0 to 2**32-1.""" # Work around the future warning on constants. if crc > 0x7FFFFFFFL: x = int(crc & 0x7FFFFFFFL) crc = x | -2147483648 x = binascii.crc32(d,crc) return long(x) & 0xFFFFFFFFL def test_compare_crc32(self): """The binascii module has a 32-bit CRC function that is used in a wide range of applications including the checksum used in the ZIP file format. This test compares the CRC-32 implementation of this crcmod module to that of binascii.crc32.""" # The following function should produce the same result as # self.reference_crc32 which is derived from binascii.crc32. crc32 = mkCrcFun(g32,0,1,0xFFFFFFFF) for msg in self.test_messages: self.assertEqual(crc32(msg), self.reference_crc32(msg)) def test_compare_poly(self): """Compare various CRCs of this crcmod module to a pure polynomial-based implementation.""" for crcfun_params, crc_poly_fun in self.test_poly_crcs: # The following function should produce the same result as # the associated polynomial CRC function. crcfun = mkCrcFun(*crcfun_params) for msg in self.test_messages: self.assertEqual(crcfun(msg), crc_poly_fun(msg)) class CrcClassTest(unittest.TestCase): """Verify the Crc class""" msg = 'CatMouse987654321' def test_simple_crc32_class(self): """Verify the CRC class when not using xorOut""" crc = Crc(g32) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0xFFFFFFFF xorOut = 0x00000000 crcValue = 0xFFFFFFFF''' self.assertEqual(str(crc), str_rep) self.assertEqual(crc.digest(), '\xff\xff\xff\xff') self.assertEqual(crc.hexdigest(), 'FFFFFFFF') crc.update(self.msg) self.assertEqual(crc.crcValue, 0xF7B400A7L) self.assertEqual(crc.digest(), '\xf7\xb4\x00\xa7') self.assertEqual(crc.hexdigest(), 'F7B400A7') # Verify the .copy() method x = crc.copy() self.assertTrue(x is not crc) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0xFFFFFFFF xorOut = 0x00000000 crcValue = 0xF7B400A7''' self.assertEqual(str(crc), str_rep) self.assertEqual(str(x), str_rep) def test_full_crc32_class(self): """Verify the CRC class when using xorOut""" crc = Crc(g32, initCrc=0, xorOut= ~0L) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0x00000000 xorOut = 0xFFFFFFFF crcValue = 0x00000000''' self.assertEqual(str(crc), str_rep) self.assertEqual(crc.digest(), '\x00\x00\x00\x00') self.assertEqual(crc.hexdigest(), '00000000') crc.update(self.msg) self.assertEqual(crc.crcValue, 0x84BFF58L) self.assertEqual(crc.digest(), '\x08\x4b\xff\x58') self.assertEqual(crc.hexdigest(), '084BFF58') # Verify the .copy() method x = crc.copy() self.assertTrue(x is not crc) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0x00000000 xorOut = 0xFFFFFFFF crcValue = 0x084BFF58''' self.assertEqual(str(crc), str_rep) self.assertEqual(str(x), str_rep) # Verify the .new() method y = crc.new() self.assertTrue(y is not crc) self.assertTrue(y is not x) str_rep = \ '''poly = 0x104C11DB7 reverse = True initCrc = 0x00000000 xorOut = 0xFFFFFFFF crcValue = 0x00000000''' self.assertEqual(str(y), str_rep) class PredefinedCrcTest(unittest.TestCase): """Verify the predefined CRCs""" test_messages_for_known_answers = [ '', # Test cases below depend on this first entry being the empty string. 'T', 'CatMouse987654321', ] known_answers = [ [ 'crc-aug-ccitt', (0x1D0F, 0xD6ED, 0x5637) ], [ 'x-25', (0x0000, 0xE4D9, 0x0A91) ], [ 'crc-32', (0x00000000, 0xBE047A60, 0x084BFF58) ], ] def test_known_answers(self): for crcfun_name, v in self.known_answers: crcfun = mkPredefinedCrcFun(crcfun_name) self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC '%s', input ''" % crcfun_name) for i, msg in enumerate(self.test_messages_for_known_answers): self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg)) self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg)) self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg)) def test_class_with_known_answers(self): for crcfun_name, v in self.known_answers: for i, msg in enumerate(self.test_messages_for_known_answers): crc1 = PredefinedCrc(crcfun_name) crc1.update(msg) self.assertEqual(crc1.crcValue, v[i], "Wrong answer for crc1 %s, input '%s'" % (crcfun_name,msg)) crc2 = crc1.new() # Check that crc1 maintains its same value, after .new() call. self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg)) # Check that the new class instance created by .new() contains the initialisation value. # This depends on the first string in self.test_messages_for_known_answers being # the empty string. self.assertEqual(crc2.crcValue, v[0], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg)) crc2.update(msg) # Check that crc1 maintains its same value, after crc2 has called .update() self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg)) # Check that crc2 contains the right value after calling .update() self.assertEqual(crc2.crcValue, v[i], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg)) def test_function_predefined_table(self): for table_entry in _predefined_crc_definitions: # Check predefined function crc_func = mkPredefinedCrcFun(table_entry['name']) calc_value = crc_func("123456789") self.assertEqual(calc_value, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name']) def test_class_predefined_table(self): for table_entry in _predefined_crc_definitions: # Check predefined class crc1 = PredefinedCrc(table_entry['name']) crc1.update("123456789") self.assertEqual(crc1.crcValue, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name']) def runtests(): print "Using extension:", _usingExtension print unittest.main() if __name__ == '__main__': runtests()
| ver. 1.4 |
Github
|
.
| PHP 8.2.28 | Generation time: 0.02 |
proxy
|
phpinfo
|
Settings